Worksheet

Step 5: Determine the equation of the tangent to the circle.

Write down the gradient-point form of a straight line equation and substitute the gradient of the tangent and a point of tangency F(-2; 5) as can be seen in the diagram.

$$y - y_1 = m_1(x - x_1)$$

$$y - y_1 = -\frac{1}{4}(x - x_1)$$

Substitute F(-2; 5):

$$y - 5 = -\frac{1}{4}(x - (-2))$$

$$y - 5 = -\frac{1}{4}(x + 2)$$

$$y = -\frac{1}{4}x - \frac{1}{2} + 5$$

$$y = -\frac{1}{4}x + \frac{9}{2}$$

Step 6: Write the final answer.

The equation of the tangent to the circle at F is $y = -\frac{1}{4}x + \frac{9}{2}$.

Exercise 3

1. Determine coordinates of the midpoints of the lines joining the following points.

	/	~ \		_	- \
1.1	(3:	-3)	and	(-5:	1)

1.2
$$(-1; -1)$$
 and $(-4; 3)$

1.4
$$(2; -1)$$
 and $(3; -4)$

1.6
$$(7; -5)$$
 and $(9; 2)$

1.7
$$(3; -1)$$
 and $(5; -7)$

Determine the equations of the lines joining the following points.

2.1
$$(0; 5)$$
 and $(-3; 1)$

2.2
$$(4; -2)$$
 and $(-3; 7)$

2.3
$$(-1; -8)$$
 and $(2; -3)$

2.4
$$(-5; 2)$$
 and $(2; 3)$

2.6
$$(-5; -7)$$
 and $(-8; 9)$

- Determine the equations of the lines that satisfy the following conditions.
 - Has the gradient -2 and passes through the point (4; -5)3.1
 - 3.2 Has the gradient 3 and passes through the point (-2, 7)
 - Has the gradient 5 and passes through the point (2; -3)3.3
 - Has the gradient $\frac{3}{4}$ and passes through the point (-7; 0) 3.4
 - Has the gradient $-\frac{3}{2}$ and passes through the point (-3; -2)3.5
 - Parallel to the equation y = -3x + 5 and passes through the point (-1; 3) 3.6
 - Parallel to the equation $y = \frac{3}{4}x 7$ and passes through the point (-2; -5) 3.7
 - Parallel to the equation $y = \frac{2}{5}x + 3$ and passes through the point (-1; 6) 3.8
 - Parallel to the equation $y = \frac{3}{5}x 2$ and passes through the point (-2; 5) 3.9
 - Parallel to the equation y = -3x and passes through the point (-1; 5) 3.10
 - Perpendicular to the equation y = -x 3 and passes through the point (2; -3) 3.11
 - Perpendicular to the equation $y = \frac{3}{4}x 5$ and passes through the point (-3; 2)
 - Perpendicular to the equation $y = -\frac{1}{3}x + 4$ and passes through the point (1; 1) Perpendicular to the equation $y = \frac{2}{3}x 7$ and passes through the point (2; 5)

 - Has the gradient 3 and cuts y-axis at -1

9780190720940_Oxford_ZoomIn_Mathematics_G12_PB.indb 101