Zoom In Maths Grade 12

Worksheet

The limit

In mathematics, when we talk about a limit we are asking: "What is the output approaching as we approach a specific input?" For example, looking at the parabola $y = x^2$ it is clear that as we get closer to the *x*-value of 2, the output will get closer to 4.

Mathematically, we say that the limit of $f(x) = x^2$ is equal to 4 as *x* moves to 2.

We write this as:

 $\lim_{x \to 2} x^2 = 4$

The derivative

The slope of the tangent at the point (x, f(x)) on the graph of *f* is called the derivative of *f* at *x* and is written f'(x).

Concavity

A function is concave up if it 'opens' up, and the function is concave down if it 'opens' down. Concavity has nothing to do with increasing or decreasing. A function can be concave up and either increasing or decreasing. Similarly, a function can be concave down and either increasing or decreasing.

The limit

In general, we obtain the following rules for limits:

- + $\lim_{x \to a} f(x) = f(a)$
- + $\lim_{k \to a} k = k$ where k is a constant.

Exercise 1

- 1. Calculate the limit of each of the following:
 - 1.1 $\lim_{x\to 2} (x+2)$
 - **1.2** $\lim_{x \to 1} \frac{x-1}{x^2-1}$
 - $\lim_{x\to 0^+} \frac{1}{x}$
 - 1.4 $\lim_{x \to 0^{-}} \frac{1}{x}$
 - 1.5 $\lim_{x\to\infty}\frac{1}{x-1}$
 - **1.6** $\lim_{x \to 10} 11$