Worksheet

Sigma notation

 Σ is a short way of writing 'sum'.

EXAMPLE

Given:
$$1^2 + 2^2 + 3^2 + ... = \sum n^2$$

Sigma can be written as:
$$\sum_{1}^{6} n^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2$$
.

The number below the sigma sign signifies the value to be substituted for *n* to get the first term and the number above the sigma sign signifies the value to substitute into the last term.

Exercise 6

1. Write the following series in sigma notation.

1.3
$$6+3+\frac{3}{2}+\frac{3}{4}+...$$

1.4 $5+15+45+135+...$

- Calculate the value of a if $\sum_{k=1}^{4} (a \cdot 2^{k-1}) = 30$.
- 3. Given $\sum_{k=1}^{n} (3k + m) = \frac{3n^2 n}{2}$, determine the value of m and hence calculate the 40th term of the sequence.
- **4.** Determine the sum: $\sum_{k=1}^{20} [3 + 7(k-1)].$
- 5. Calculate the value: $\sum_{n=1}^{15} [2 + 3(n-1)].$
- Solve for n: $\sum_{k=1}^{n} 8(\frac{1}{2})^k = 7\frac{15}{16}$.
- 7. Calculate the value of *n* if $\sum_{k=1}^{n} (20 4k) = -20$
- 8. Determine $\sum_{k=3}^{\infty} 5.2^{-k+2}$.
- **9.** Determine the value: $\sum_{k=1}^{\infty} 54 \left(\frac{1}{3}\right)^{k-1}$.
- 10. Given that $\sum_{n=1}^{\infty} ar^{n-1} = 3$ where -1 < r < 1.
 - 10.1 Write down an equation relating *a*, *r* and 3.
 - A second series is formed by squaring the terms of the series above. The sum to infinity of this series is also equal to 3. Determine the values of a and r.