Exponents

Laws of exponents; Calculations

Reminder

Law 1: Multiplication of powers with the same base: For $a \neq 0$ we can write the following: $a^m \times a^n = a^{m+n}$, but $a^m \times b^n \neq (ab)^{m+n}$ (because the bases differ). Law 2: Division of powers with the same base: For $a \neq 0$ we can write the following: If m > n then $a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$, where $a \neq 0$. If m = n then $a^m \div a^m = \frac{a^m}{a^m} = 1$ or $a^m \div a^m = a^{m-m} = a^0$, which means that $a^0 = 1$ If m < n then $a^m \div a^n = \frac{a^m}{a^n} = \frac{1}{a^{n-m}}$ If m = 0 then $a^0 \div a^n = \frac{a^0}{a^n} = \frac{1}{a^n}$ or $a^0 \div a^n = a^{0-n} = a^{-n}$, which means that $a^{-n} = \frac{1}{a^n}$ Law 3: Raising a power to a power: For $a \neq 0$ we can write $(a^m)^n = a^{m \times n}$. Law 4: Finding a power of a product in brackets: For $a \neq 0$ and $b \neq 0$ we can write $(ab)^n = a^n \times b^n$.

1. Simplify the following expressions. Write all answers with positive exponents.

2. Simplify the following expressions. Write all answers with positive exponents.

Exponents Solving problems

Examples

1. Solve $3^x = 9$.	2. Solve $3^x = \frac{1}{9}$.	3. Solve $3^{x-1} = \frac{1}{27}$.
$3^{\chi} = 9$	$3^{\chi} = \frac{1}{9}$	$3^{x-1} = \frac{1}{27}$
= 3^2 (because 9 = 3 × 3) ∴ $x = 2$ (bases are equal)	$=\frac{1}{3^2}$ (because 9 = 3 × 3)	$=\frac{1}{3^3}$ (because 27 = 3 × 3 × 3)
	$= 3^{-2}$ (law of exponents)	$= 3^{-3}$ (law of exponents)
	$\therefore x = -2$ (bases are equal)	$\therefore x - 1 = -3$ (bases are equal)
		y = -3 + 1 = -2

1. Solve for *x*.

a)	$2^{x} = 32$	b)	$3^{x} = 1$	c)	$4^{x} = 256$
d)	$5^x = \frac{1}{625}$	e)	$6^x = \frac{1}{216}$	f)	$7^{\chi} = \frac{1}{343}$
g)	$8^{x+1} = 64$	h)	$9^{x-1} = \frac{1}{729}$	i)	$3^{2x-6} = 1$

- **2.** A man had two children. In turn they each had two children. This pattern was repeated twelve times from generation to generation.
 - a) How many children were there in the sixth generation?
 - **b)** Which generation will consist of 1 024 children? [Hint: Let the number of the generation be *x*.]

Tip

You are the first generation of your parents and the second generation of your grandparents.

- **3.** Express the following numbers in scientific notation.
 - **a)** In 2020 the world population will be about 7 585 million.
 - **b)** The diameter of an oxygen atom is 0,000 000 000 12 m.

